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1 Introduction

When health plans or government agencies are paying provider groups, what should the

role of risk adjustment be and what difficulties are encountered when diagnostic based risk

adjustment is employed. Historically, relatively simple age-sex adjustments have repre-

sented the extent of risk adjustment for providers; however, Newhouse has emphasized the

important economic tradeoffs theoretically (Newhouse, 1995) and practically (Newhouse,

1998) entailing considerations of more extensive approaches. We attempt to provide an

intuitive and practical discussion of this aspect of the problem of paying provider groups

a sufficient amount to cover average standards of care across diagnosed diseases. This

problem is faced generically by health plans, state governments, the federal government in

the US, plus regional health ministries in other countries. But first, we need to be clearer

about what we mean by risk adjustment.

Any discussion of risk adjustment must begin with a clear description of the particular

definition of risk adjustment and problem under consideration since the concept itself is well

worn but not universally defined (Dowd and Feldman, 2001). We begin with the common

starting point of postulating a functional relationship describing health care expenditures

for individual i over a given period, such as a year: Expendituresi = f(Xi, ui). In our case,

the vector of observed explanatory variables X primarily will be diagnosis based indicator

variables from a commonly used commercial risk adjustment system (the Diagnostic Cost

Group/Hierarchical Condition Category (DCG/HCC) model recently chosen as the risk

adjustment tool for use in Medicare+Choice).

Some of the statistical approaches to explaining health care expenditures have tended

to fall back on simple ordinary least squares (OLS) regression models as the functional form

of f(Xi, ui) (see Blough et al. (1999) and Duan, Manning, Morris, and Newhouse (1983)

for some exceptions). This OLS modeling focus takes place in an environment where stable
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and unobserved latent factors in populations exist that can never be fully accounted for

by managers, modelers, or researchers (Newhouse, 1998). The distribution of residuals in

such regressions offer potential opportunities for cream skimming off these latent factors

either by health services providers (e. g. by choosing services to focus on or de-emphasize)

or by insurers (e. g. in setting barriers to particular patient populations). Stability and

unobservability from the perspective of the modeler represent necessary conditions for the

type of cream skimming we postulate since random outcomes/behavior in a single year

or factors that can be observed by the modeler can be accounted for. So, to summarize,

risk adjustment in the context of the present paper is a process of using clinical and pos-

sibly utilization information to calculate the expected health expenditures of individual

consumers in a health care provider system over a year to allocate resources to particular

provider groups within the system. Our discussion has wider implications as well, that we

will attempt to illuminate as we progress.

We discuss regression model approaches in the functional form that can address one

specific type of opportunity for cream skimming. We focus on what might happen when

one can identify specific types or groups of patients who are systematically mispredicted

– both in estimation samples and prediction samples – that cannot or are not accounted

for in regression. Regression analysis also assumes a particular symmetric loss function

formulation that tends to be accepted without critical consideration in going from estima-

tion samples to prediction samples (specifically mean squared error when discussing OLS).

Next, we discuss the implications of symmetric loss functions in the context of common is-

sues and purposes for explaining health care expenditures in populations. The sense of the

loss function we discuss here is totally statistical, and does not account for economic dead-

weight losses that one also might calculate in considering the behavior responses to cream

skimming incentives. Finally, we also discuss hierarchical model approaches that could be
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employed, regardless of which functional form approach is used, that would control the

degree of credibility we put in individual level risk adjustment for particular characteristic

differences in the underlying patient populations.

One could approach these issues in a highly technical statistical way; however, this paper

attempts to take an intuitive focus aimed at a wider readership. An intuitive approach

requires a keen focus with good generalizability to a wide range of applications. The

focus of the paper throughout will be on a process for approaching these problems in risk

adjustment in the context of a specific example of resource allocation.

2 A Resource Allocation Example

In practice, there are many ways that risk adjustment could be brought to bear to ad-

dress problems in resource allocation once a potential or actual treatment population is

identified. Common examples include the case of health plans devising capitated contracts

with providers or groups of providers, staff model health maintenance organizations allo-

cating resources to subgroups of providers, self insured employers allocating resources for

employee health coverage across geographically separated plant sites, or countries with na-

tionalized health insurance/providers allocating funds to localized trusts. The main goal

is to achieve fairness in the allocation of fixed (or quasi-fixed if enrollment is open) assets

to cover health care services. By fairness in this context, we mean that funds are provided

such that sufficient resources are available with efficient management to treat patients to

the community standard of care. Careful balancing to achieve this is extremely difficult,

since objective standards for the provision of health care varies substantially across condi-

tions and incentives facing patients and providers are complex. The focus of this example,

though, is on sufficiency for the providers or to a geographic unit to which resources are
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being allocated, while recognizing that other standards are possible.

Fairness in this sense and risk to the providers are not precisely mirror images of each

other since fairness to the providers only requires mitigation of risks that are out of the

control of providers. One of the chief factors that should be out of the control of providers

is the profile of the clinical complexity of the patients. While debates may rage over the po-

tential effectiveness of cream skimming by providers in avoiding the most clinically complex

patients, an effective solution is to mitigate those risks, and thus the incentive for cream

skimming, directly. Recently, measuring the clinical complexity of patient populations to

discourage cream skimming has generated a range of commercially and academically de-

veloped products with different characteristics, but again these discussions generalize to

any of these systems and models using those systems. These products share a focus on

diagnoses and grouping of diagnoses to classify patient risk at the capitated level. These

indicators can then be used as some of the independent variables Xi in a regression analysis

on patient level expenditures. Resources can be allocated by payments/allocations based

on predicted expenditures from these regressions.

As mentioned above, in this paper we will be using Version 5 of the DCG/HCC model

in this role. In particular for the HCC-DCG models, but for most of these risk adjustment

models in general, OLS models without intercepts are used by the developers of the methods

(Ellis et al. (1996); Ash, Ellis, at al. (1998); and Pope et al. (1998)). A number of

statistical and economic issues are raised/addressed by this choice of a model structure (also

discussed by Van de Ven and Ellis (2000)). One important factor is having monotonicity

in estimated predicted costs in incremental increases in risk adjustment characteristics. By

selecting models with only positive parameters, this means that any additional diagnosis in

a patient record brings a positive incremental predicted increase in expenditures - models

with intercepts might not have this property. Another important factor is simplicity or
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ease of explanation to policy makers or managers, despite potential difficulties even in

truly understanding OLS regression. What managers and policymakers actually seem to

value is the ability to build a model into a spreadsheet for ease of use and the capability

of making intuitive explanations of the implications of models – characteristics not limited

to OLS estimates.

One of the reasons that OLS models have been used is difficulties with estimating

in samples of 1,000,000 or more with alternative functional forms, sample sizes that are

common in the DCG model development work cited above. But such 1 million/3 million/10

million patient samples can still create cells per HCC per geographical unit that can be quite

small for rare conditions. Obviously, there are balancing acts between unwieldy models with

too much data and these same complicated models with less data where these small cell

problems can be even greater. This variation in statistical properties across cells suggests

some type of hierarchical or multi-level model that focuses credibility issues on these smaller

cells. Another important difficulty with more complicated models that varies with the type

of complexity is the retransformation problem (Manning and Mullahy (2001)). And there

also is difficulty in managing the attempt to avoid overfitting problems, especially in out

of sample prediction, in practice. The standard best linear unbiased estimator concepts of

OLS also are important; however, using models with suppressed intercepts leads to biased

estimates.

One major issue not addressed by these issues is skewness in the distribution of the

underlying health care expenditures at the individual patient level. The skewness of use

of health care services in general is well known (Duan, Manning, Morris, and Newhouse

(1983)), summarized by Jones (2000), and drawing on Manning (1998) and Mullahy (1998).

Much of that discussion and focus has been on the log transformation and the difficulties

involved in retransformation (further expanded on by Manning and Mullahy (2001)). The
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log transformation is popular, but could overcorrect or undercorrect for the underlying

skewness in the data depending on the context. As we will develop below, a square root

transformation clearly outperforms the log transformation in the particular health expendi-

ture data example that we employ. In particular, skewed data can lead to situations where

the predicted payment value is higher then actual costs for most patients, while high cost

patients are still severely underpredicted. Other combinations are possible as well from

different types of skewness or kurtosis, but intuitively it seems to be related to combining

distributions of illness and health together, aggregating at the patient level. Explaining

such issues to health care managers and policymakers is difficult, especially when even

complex econometric techniques do not solve the problem easily.1

Another thing heretofore undiscussed and unrecognized as an issue in risk adjustment,

complicated by data skewness, is the implicit assumptions about the nature of the loss

function imposed by regression. One of the goals of this paper is to evaluate the implications

of the symmetric loss function against the fairness and incentive goals for this type of risk

adjustment. In regression, especially OLS regression, the loss function is symmetric in the

units of the dependent variable, which may be transformed. Therefore, an evaluation needs

to take account of the implicit changes in the loss function as different functional forms

(e. g. log, square root, gamma) are employed. More importantly, one may not desire an

equal treatment of overprediction (patients whose predicted expenditures are greater than

their actual expenditures) and underprediction (patients whose predicted expenditures are

1We looked carefully at both Box-Cox and GLM models among these more complicated models. The

Box-Cox error terms on the transformed estimation scale indicated a type of complex form of heteroskedas-

ticity that ruled out a direct retransformation fix (Manning, 1998). The GLM model allows the skewness to

be addressed by the choice of a distributional family (in our case a Gamma) matching the mean/variance

relationship, while the non-linearity is separately addressed by the power choice in the link (in our case a

square root).
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less than their actual expenditures).

The cream skimming incentive reliably focuses increased relative attention on under-

prediction. If providers or health plans also can reliably identify the stable part of the

distribution of patients who are more likely to be underpredicted, using information not

readily added to the risk adjustment process, then the potential for cream skimming ex-

ists (Newhouse (1998)). This relationship might not be completely uniform, depending on

the potential nature of these unmeasured factors across patients. Nevertheless, a properly

designed asymmetric loss function could balance these incentives more appropriately with

relative ease.

Assessing the appropriateness of resource allocation is more complex as it could affect

the choice of a loss function. One requirement would seem to be that the mean payments

or resource allocation at a provider group level not be skewed by any change in the risk

adjustment loss function. Such an outcome could not be generalized, but must by definition

be context specific, though the allowance of individual deviances, but adherence to group

means, could be written into an objective function. Another aspect of the desired goal is

to provide uniform incentives for quality of care across all diseases. Though we employ

disease specific risk adjustment, we do this at the mean level, not the variance level, and

individual diseases have different ranges of potential treatment costs and different levels of

quality of care concerns. The loss function could incorporate these differences as well, such

that asymmetry to allow underpayment is more restricted when treatment costs (and thus

courses of treatment) and quality are more highly variable. Addressing this latter issue is

beyond the scope of this paper; however, it is important to keep it in mind throughout.

Clarifying all of these issues requires the selection of good examples which illustrate the

range of concerns expressed. We choose to use the Department of Veterans Affairs (VA)

health care system as such an example. For more than five years, VA has been allocating
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national Congressionally appropriated resources to 22 (now 21 as two smaller ones have

been merged) Veterans Integrated Service Networks (VISNs) to deliver local care to eligible

veterans. The nature of this problem is quite similar to the problem of an HMO capitating

patient care to a set of provider groups or other similar problems outside of the government

setting. It also provides a large amount of data to set up estimation and prediction samples

so that out of sample prediction and overfitting problems may be studied. In addition, VA

is considering DCG/HCC risk adjustment for use in their VISN resource allocation system.

2.1 Specifics of VA Example

The VA operates the largest health care system in the US with 163 hospitals, more than

800 community and facility-based clinics, 135 nursing homes, and other facilities. With a

medical care budget of more than $19 billion in FY2000, out of the total population of 26.4

million veterans, VA provided care to 3.8 million unique users, 3,000,499 of whom were

provided care under priority for service connected disabilities, meeting an income/wealth

based means test, or from a variety of smaller health care need and veteran specific reasons.

2,979,760 of these patients have measured costs accurate enough to be included in the

patient sample that serves as the sampling population for our analysis.

This FY2000 dataset of the universe of VA Congressionally reimbursed users, consisting

of 2,979,760 observations, was randomly sampled into two groups of 100,000 observations

each. One sample is the estimation sample and the other forms a prediction sample that will

allow testing for overfitting sensitivity. An advantage of the VA population is that it is large

enough itself to make these relatively large subpopulations from a sufficiently larger base.

Note that most practical public or private populations in managed care plans or health

care provider systems in the US fall in the range of this sample size (see Dunn, 1998, for

example, which analyzes risk adjustments in four populations of 240,000, 120,000, 115,000
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and 70,000). Many people also test risk adjustment models on large scale health care

surveys that collect and link claims data and diagnoses, such as the Medical Expenditure

Panel Survey and the Medicare Current Beneficiary Survey with much smaller sample sizes.

In recent years, the most important advances in risk adjusting patient populations

to explain health care expenditures have employed diagnostic information to characterize

disease patterns. There are two basic strands of analysis that flow from this work. Most

commonly, analysis has focused on predicting the health care utilization of enrolled patient

populations next year from diagnoses and other information (possibly even including costs)

collected this year. This is called prospective modeling. However, a growing application of

risk adjustment is in helping integrated health care delivery systems or insurers understand

differences in the risk of current populations, for budget allocation or rate setting purposes.

We employ this type of concurrent modeling in this paper. For the VA setting there is a

large pool of potential patients (26 million) and a persistent, but not identical, pool of year

to year users (3 million, though this is growing at present as long as alternatives in the

private sector offer restricted benefit packages [e. g. Medicare with outpatient prescription

drugs]). As a result, without explicitly enrolled patients, the VA does resource allocation

to the VISNs on a rolling two year regulatory lag. For example, the FY2000 data used

here was used by VA to build the FY2002 VISN payments or budgets – though a diagnosis

based risk adjustment system has not been adopted there at this time. The intuition for

this particular example follows from that context.

To characterize the explainable portion of variation in expenditures, we begin with

Diagnostic Cost Group (DCG)/Hierarchical Coexisting Conditions (HCC) models (Ellis,

et al. (1996), Ash, et al. (1998), Pope, et al. (1998)) to group ICD-9-CM diagnoses

into HCC indicator groups as explanatory variables for health care expenditures. This

model takes the 15,000 ICD-9-CM codes, groups them into categories and then places the
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groups into body system/clinical condition specific hierarchies. These hierarchies allow

some patients to have multiple HCC’s and disallow others, helping to address overfitting

problems when people with complex diagnoses also by definition have less complex ones in

the same hierarchy. Out of the 118 HCC’s in Version 5 of the DCG model, we employ 69

HCC’s in our model that are the most statistically significant in explaining differences in

expenditures for the VA population. HCC’s are not mutually exclusive, veterans can and

do have many more than one HCC, in fact, as we will see it is the veterans with more than

10 HCC’s who are particularly problematic to estimate. Brief descriptions of these HCC’s

are reported in Table 1.

In addition, VA has a number of special emphasis programs and offers care for a wide

range of disabling conditions that add to expenditures for veterans served by those programs

or having those disabling conditions. VA has established systems for defining membership

in these groups and they are assigned hierarchically, according to increasing expected costs,

so that no veteran can appear in more than one special population group and they appear

in the highest cost group for which they qualify. Fourteen of those groups are used in this

analysis, identified by brief descriptions in Table 1 as well.

In addition, the set of explanatory variables X includes a gender identifier and age

variables. First, the age variable is centered at 60, near the mean age for VA patients. But

some ages for veterans are missing or have implausible values (e. g. below 20) and these are

replaced with the mean age before centering. Then these observations are identified with

an agemiss variable that also is used in the analysis. Finally, the centered age variable is

squared and that variable is used as well.
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TABLE 1: HCC and Special Population Flags
Name Description

HCC flag ID HCC description
hcc001 hiv/aids
hcc002 septicemia (blood poisoning)/shock
hcc003 central nervous system infections
hcc004 other infectious disease
hcc005 metastatic cancer
hcc006 high cost cancer
hcc007 moderate cost cancer
hcc008 low cost cancers/tumors
hcc013 diabetes with chronic complications
hcc014 diabetes with acute complications
hcc015 diabetes with no or unspecified complications
hcc016 protein-calorie malnutrition
hcc017 moderate cost endo/metab/fluid-electrolytes
hcc019 liver disease
hcc020 high cost chronic gastrointestinal
hcc021 high cost acute gastrointestinal
hcc022 moderate cost gastrointestinal
hcc023 low cost gastrointestinal
hcc024 bone/joint infections/necrosis
hcc025 rheumatoid arthritis/connective tissue
hcc027 aplastic and acquired hemolytic anemia
hcc028 blood/immune disorders
hcc029 iron deficiency and other anemias
hcc030 dementia
hcc031 drug/alcohol dependence/psychoses
hcc032 psychosis/higher cost mental
hcc033 depression/moderate cost mental
hcc040 quadriplegia
hcc041 paraplegia
hcc042 high cost neurological
hcc043 moderate cost neurological
hcc044 low cost neurological
hcc045 respirator dependence/tracheostomy
hcc046 respiratory arrest
hcc047 cardio-respiratory failure and shock
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TABLE 1: HCC and Special Population Flags cont.
Name Description

hcc048 congestive heart failure
hcc049 heart arrhythmia
hcc050 acute myocardial infarction
hcc051 other acute ischemic heart disease
hcc053 valvular and rheumatic heart disease
hcc054 hypertensive heart disease
hcc055 other heart diagnoses
hcc058 high cost cerebrovascular disease
hcc059 low cost cerebrovascular disease
hcc060 high cost vascular disease
hcc061 thromboembolic vascular disease
hcc063 other circulatory disease
hcc064 chronic obstructive pulmonary disease
hcc065 high cost pneumonia
hcc066 moderate cost pneumonia
hcc067 low cost pneumonia
hcc068 pulmonary fibrosis/other chron lung
hcc069 pleural effusion/pneumothorax
hcc075 low cost ear, nose, and throat
hcc076 dialysis status
hcc077 kidney transplant status
hcc078 renal failure
hcc079 nephritis
hcc080 other urinary system
hcc091 chronic ulcer of skin
hcc093 vertebral fractures/spinal cord injury
hcc094 hip fracture/dislocation
hcc095 head injuries
hcc096 drug pois/intern injur/traum amput
hcc097 other injuries and poisonings
hcc098 complications of care
hcc099 major symptoms
hcc100 minor symptoms, signs, findings
hcc102 high cost congenital/pediatric
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TABLE 1: HCC and Special Population Flags cont.
Name Description

hcc103 moderate cost congenital
hcc110 major organ transplant status
hcc111 other organ transplant/replacement
hcc112 artificial opening status/attention
hcc113 elective/aftercare
hcc114 radiation therapy
hcc115 chemotherapy
hcc116 rehabilitation
hcc118 history of disease

Special flag ID Special population flag description
Flag1 Spinal cord injury
Flag2 Chronic mental illness
Flag3 Traumatic brain injury
Flag4 Blind rehabilitation
Flag5 Post-traumatic stress disorder
Flag6 Alcohol and drug addiction
Flag7 Stroke
Flag8 Hepatitis C
Flag9 Home health care
Flag10 Domicilliary
Flag11 Long term care
Flag12 AIDS
Flag13 Transplant
Flag14 ESRD

The general structure of budgeting in the VA system is beyond the scope of this paper

(the general issues are presented in Lehner, Burgess, Hults, and Stefos (1996)); however,

a few salient facts must be presented for context. Much Congressional scrutiny is fo-

cused on the fairness of these distributions of appropriated resources to local levels since

these represent state and congressional district federal spending (reference GAO study and

RAND study). The current allocation system only has three prices, from grouping patients

into three very large groups, which provides very little disease specific risk adjustment.

Both of these studies urge some wider, more specific way of categorizing patients, though
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DCG/HCC risk adjustment is only one possibility under consideration.

Here we step aside from the specific VA problem to postulate a related one, that il-

lustrates our problem better. The importance of risk adjustment increases as the sample

size decreases, but conversely doing the risk adjustment properly gets more difficult if the

groups are not experience rated. We have chosen a sample size of 100,000 capitated pa-

tients for illustration here. This accentuates problems that might occur only when sample

sizes of particular diagnoses drop and creates risks of overfitting. We will test this with

cross validation across the randomly selected 100,000 patient populations pulled from the

much larger VA population.

We spent a great deal of time and effort evaluating different models and functional

forms for Expendituresi = f(Xi, ui), including transformations of Expendituresi. We began

with OLS regression as a basis for comparison. Instead of presenting this wide variety of

potential models directly, we will do all of our comparisons to one alternative in the General

Linear Model (GLM) family with Gamma distributed errors and a power of 0.5 (square

root) link function. In doing this, we will emphasize the process that was used to select

this alternative model and some of the important comparisons that we did, rather than

the technical statistical methods of how to do this. STATA 7.0 was used to perform these

analyses.

3 Description of the Base Models and Results

A very small number of observations in the two randomly selected 100,000 patient samples

(three cases in the estimation sample and two in the prediction sample) had missing gender

and were deleted from all analyses. The summary statistics presented in Table 2 illustrate

the high degree of variability (coefficients of variation near 3) and skewness to the right.
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TABLE 2: Dependent Variable Statistics for the Two Samples
Sample Mean Stdev Skewness Kurtosis Median 95% 99%

Estimation 5369 14929 9.111 144 1532 22805 70279
Prediction 5468 15689 12.55 416 1553 23165 71811

For the OLS model, we present the model with an intercept, unlike the no-intercept

models used by the DCG model developers (Ellis et al. (1996); Ash, Ellis, at al. (1998);

and Pope et al. (1998)), although we ran both. The OLS models have both advantages

and disadvantages. The advantages include simplicity and ease of estimation, especially

for very large samples. The disadvantages include failure to deal with the skewness in the

data, the possibility of negative predictions (when employing an intercept), or bias (for the

case of an added flag for no HCC, but a suppressed intercept).2

For the GLM model, we considered various power transformations for the link, including

the log link, as well as a failed attempt at the identity link. We judged the alternatives not

in terms of their deviance, a traditional approach, but in terms of their goodness of fit to

the data as measured by two sets of tests. The first of these is Pregibon’s Link Test, which

was developed for dichotomous models, but can be easily adapted to any GLM. This is a

two-step test conducted on the scale of the link function, with the first step estimating the

coefficients of the full model and then creating a summary index function on the estimation

scale. In the second step, the GLM estimates the response of cost to this index and its

square. If the model is linear under the link function, then the coefficient of the squared

term should be insignificant.

The second test is a direct test on the scale of interest - actual dollars – or the raw scale.

The test is a variant of one suggested by Hosmer and Lemeshow (2000) for checking the

fit of logistic models, but can be applied more widely. After estimating the full model, we

2We discussed the bias in the no intercept model briefly above, recall that the suppressed intercept is

used primarily to ensure monotonicity and no negative predictions in practical applications. It is an open

question whether this gain is balanced by the bias it creates.
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predict mean expenditures (conditional on the covariates) for each case on the raw scale.

We create raw-scale residuals and then a set of flags for prediction categories (twenty of

them in five percent ranges, based on prediction). We regress the raw-scale residual on

these 20 indicators, suppressing the intercept, and using robust (Huber/White) estimators

of the variance-covariance matrix. If the link function is correct and the specification of

the X’s is appropriate, then the means by subgroups should not exhibit any systematic

U-shaped pattern. And the estimates should not be significantly different from zero, using

an F test. Given the sample size here, there could be significant but small coefficients. We

also used this test to check the fit by age and number of HCC’s for all analyses.

Our focus on these tests in general and for age/HCC subgroups begins our investigation

of the impact of loss functions on model choice. Deviance based measures, especially

squared deviation based measures, line up directly with the symmetric OLS loss function.

The Hosmer/Lemeshow and Pregibon tests focus us more generally on avoiding systematic

mis-payment for any of the tested subgroups of patients.

These analyses suggested that the optimal power link was about +0.6, though we use

the pure square root (+0.5) for simplicity of retransformation. Both the linear and log

links led to systematic misfitting in the center of the predicted range, with the direction of

the misfit the opposite in the two extremes. The square root link seems to be a reasonable

compromise that maintains the linearity of the index function, while fitting the raw-scale

relatively well. Moreover, values for the largest Cook’s Distance indicate that both the OLS

and the log models have more influential observations than does the square root model.

Thus, the functional form of our model assumes that [E(Expendituresi|Xi)]
0.5 = Xi or

that, rearranging, [E(Expendituresi|Xi)] = X2
i , where the Xi’s include the various HCC

and subpopulation flags, and demographic variables as described above. Another worry

with the square root link is that negative coefficients on the HCC terms will cause large
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negative terms in X̂ to become large positive predictions, an order of predictions problem

that does not arise with identity and log links. Fortunately, in our case, this did not happen.

All of the HCC variables had positive coefficients, and the only negative coefficients were

for demographic variables.

The other choice in the GLM approach is to select a distribution family. To do this, we

need the relationship between the Var(Expendituresi|Xi) and the E(Expendituresi|Xi). We

employed the modified Park test (Park, 1966) described in Manning and Mullahy (2001).

GLM models expect that the variance function is some power of the mean function, both

conditional on X. In this case, we regress the log (the raw-scale residual squared) on the

log of the raw-scale prediction. If the slope is near two, the data are typically modeled

with a gamma distribution. If near one, we could use a Poisson-like approach. For most of

what we examined the estimated slopes were very close to two, indicating a model with a

constant coefficient of variation and the choice of a gamma distribution. We did notice that

the model was not as well-approximated by the gamma over the range of predictions or the

number of HCC’s. However, as long as the link and X’s are specified well, any problems in

the distribution using this part of the information only lead to efficiency losses if the sole

concern is getting a payment system that is not systematically biased for some subgroups

of patients. When there also is a goal of understanding the distribution of actual costs –

to be able to say something about how many cases will cost more than $100,000, or to

simulate the distribution of VISN costs – then one would need to find a distribution that

more closely approximates the empirical one. We discuss both finding better distributions

and implications further below.
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3.1 Basic Results for the OLS and GLM Models and Model

Checking

Regression results for the GLM and OLS models on the full estimation sample may be

found in Tables 3 and 3A respectively in the appendix. Note in Table 3 that in addition

to presenting the direct regression results, we present the squared raw scale coefficients in

dollars, just as one would present OLS results to policymakers or managers. Nearly all

of the parameter estimates are statistically significant and in the raw scale, the smallest

increment for practical significance is for HCC 068 (pulmonary fibrosis and other chronic

lung) with a value of $26, among six parameters under $50. Note in Table 3A that a handful

of the parameters are statistically insignificant, though the choice of HCC’s for this model

came from an analysis of the entire 3 million patient database where all of these HCC’s are

statistically significant. The constant is very slightly negative (statistically insignificant);

however, no parameter estimate is smaller than the $236 estimate for HCC 075 (low cost

ear, nose, and throat) and only four of the parameters are under $500.

The modified Hosmer/Lemeshow tests illustrated the most interesting differences be-

tween the OLS and the GLM model. Figures 1 and 2 in the Appendix depict the main

results for the 20 categories by five percent range of the rank of cases by prediction. Focus-

ing first on the full estimation sample results (in Figure 1), note that the first ten categories

(below the median prediction) for the OLS model all have large positive residuals (all highly

statistically significant with t-statistics roughly proportional to the size of the coefficient),

indicating that the predictions systematically underpay for these cases. Above the median

prediction, in the OLS model, the reverse is true and there is systematic overpayment with

generally statistically significant negative residuals. However, the very last category, the

top five percent of predictions revert back to slight (statistically insignificant, though larger

in value) underpayment. As we see from Cook’s Distance and influential observation statis-
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tics, the OLS model focuses a great deal of attention on this top five percent of predictions,

getting them closer to right, at the expense of poorer fitting everywhere else but near the

median of predictions. In this VA population, this would provide a greater incentive for

seeking out sicker patients at the expense of healthier patients, which might be an informed

policy choice, but was hidden by more cursory analysis.

The GLM model, though, performs much better across the range of predictions, as we

can see graphed on the same scale in Figure 1. While 17 of the 20 categories had t-statistics

on their residuals of over three, only the highest prediction category has a t-statistic over

three in the GLM model. With a value of -$3065 on the raw scale and a t-statistic of

-5.23, the GLM Gamma/Square Root link model systematically overpays for this group

of patients. Nevertheless, overpaying for the most expensively predicted patients is not

necessarily a bad outcome from an incentive perspective. The VA and other organizations

sometimes consider various kinds of top-coding or other separate treatment of the most

expensive cases to deal with this. Yet, as compared to the OLS model, the GLM maintains

a much better overall fit, rather than orienting its estimates to predict this most expensive

group well, at least in the case of the VA data we employ.

Further exploratory analysis uncovered two additional major issues in estimation. First,

a closer look at the underlying causes of the Hosmer/Lemeshow test outcome shows that

the difficulty in estimating high predicted cost patients is most closely related to problems

in estimating individuals with a large number of HCC flags turned on, in particular ten or

more. A coefficient on those individuals with ten or more HCC’s for the GLM model has a

raw scale value of -$5138 with a t-statistic over seven, a highly problematic overprediction

problem. The OLS model on the same test systematically underpredicts by $3116 for these

ten or more HCC patients and systematically overpredicts patients with 3-5 HCC’s with

statistically significant t-statistics over five. We tried to remedy this problem with a wide
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variety of ad hoc and formal specifications, but did not find one that significantly improves

on the problem.

More intuitively, though the nature of the problem differs in the OLS specification as

opposed to the GLM specification, when we use the same HCC parameters for all patients

then people with multiple HCC’s are adding the same amount to the estimation (square

root) scale predictions whether or not they have other HCC’s (possibly comorbidities that

are related) or not. In the GLM, on the square root scale, the incremental cost of adding

one more disease appears to be less if the patient already has a large number of HCC’s

than if they have fewer.

Finally, on the other end of the distribution of the number of HCC’s, we had a hugely

significant (t-statistic of 42) coefficient of $810 on the raw scale for the GLM on the patients

with no HCC’s. The basic GLM model significantly underpredicted these patients, and

the parameter estimates on their demographic characteristics seemed to be significantly

different as well. Though the OLS model predicted these no HCC patients very well, we

explored the impact of separating the sample and just estimating the patients with at

least one HCC separately. The regression results for the GLM and OLS models on this

restricted group of 81,725 patients in the estimation sample may be found in Tables 4 and

4A in the appendix respectively. Figure 2 in the appendix also illustrates the results of the

20 category, ranked by predictions, Hosmer/Lemeshow test for this restricted sample with

at least one HCC. For the OLS model, the results are similar, though the coefficient on the

five percent highest predictions category is larger ($1406 vs. $912) and more significant (2.07

vs. 1.58). Similarly for the GLM model, the most important difference in the restricted

model for this test also is on the five percent highest predictions category (-$4025 vs. -$3065

in coefficients for the at least one HCC sample vs. the full sample).

We will study this restricted sample more completely with respect to general evaluation
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and loss functions below. The figures also illustrate the impact of the Hosmer/Lemeshow

test statistics on the hold out prediction sample. Here we search in particular for overfitting

problems affecting the impact of the parameter estimates on a new sample. The OLS model

on the full sample is nearly identical across the range, except again in that 20th category,

the 95-100% largest predictions. Here the coefficient goes from $912 to $2058 and the t-

statistic increases in the prediction sample to 3.31 and statistical significance. Again, this

is a substantially increased underprediction problem that could create a more severe cream

skimming incentive. The same pattern appears in the restricted sample of those with at

least one HCC. And just as before, these results are strongly associated with a similar

incentive to avoid patients with 10 or more HCC’s. In the GLM model on the full sample,

comparing the Hosmer/Lemeshow statistics between the estimation and prediction sample

also shows the most important difference in the 20th category; however, the effect goes the

opposite way. The coefficient is smaller (-$3065 to -$2555) and less significant (-5.23 to

-3.97) and the same pattern is exhibited in the restricted sample with at least one HCC.

The importance of these Hosmer/Lemeshow statistics is underscored in the next section

when we look more closely at evaluating forecast procedures.

4 Methods for evaluating forecast procedures: Sep-

aration of fitting and forecast methods; and Loss

functions

4.1 Data for modeling fitting (F-data)

As we just have seen in the preceding section, statistical modeling and evaluation can be,

and should be, separated. The model fitting is conducted on a data set denoted “F” (for
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fitting in this section, what we called the estimation sample above) used to reveal the prob-

abilistic relationship between outcomes (in our examples, annual expenditures of patients)

and of selected predictors, or covariates, or combinations thereof (diagnoses, severity flags,

etc, in our example). Selecting an appropriate model does not require specifying a measure

of prediction inaccuracies (via a loss function).

Forecast illustrations in this paper are conditional on knowing a specified case-mix of

predictors (so the number of patients in the future at each facility and the percentages in

each diagnosis group are known, e.g.). In practice, forecasts of other quantities also would

be required, but while uncertainty about these matters would add to overall uncertainty,

the statistical modeling issues that arise in more comprehensive situations do not differ fun-

damentally from what we show here. The fitting results illustrated here require estimating

a probability distribution for each combination of individual covariates (demographic com-

binations, diagnoses, severity flags, etc.). Assuming individuals are independent, at least

within medical groupings, these results provide a joint probability distribution for individ-

ual outcomes (annual expenditures) as dependent on specified predictors.

4.2 Data for evaluations (E-data) of forecasts

Evaluations of forecasts also are done with a data set (“E” for evaluation, in this section,

what we called the prediction sample above). Too often, the data sets F and E are the same,

but that provides unconvincing evaluations. A new data set is better for doing evaluations,

and in our case the VA data set has been split into 2 equal parts, F and E, each with about

100,000 VA patients (both randomly drawn from nearly 4 million patients treated in 2000).
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4.3 Loss functions

Evaluations then depend on how closely outcomes in the evaluation (E) data can be pre-

dicted from predictors in the fitting (F) data, based on the prediction model developed

with E data. “Closely” will be taken to mean that differences, or errors, depend on dif-

ferences between predicted outcomes and actual outcomes. Differences are measured by a

loss function (negative of a utility function) that involves both data sets (F and E). The

loss functions we have considered all take the form:

Loss =
∑

j

(Wj ∗ D(errorj)), (1)

where the error is defined as:

errorj = predictionj − outcomej (2)

Sums in this loss function are over j in a set J , where J could be all individuals in F,

or it could be an index set for well-defined clusters of individuals (e.g. VISN groupings,

or demographic, or disease type, or combinations thereof), for the forecast data set F. The

function D() is 0 when an error = 0 and D increases monotonically in both directions

as errors move away from 0. The weights Wj > 0, which are permitted to depend on

outcomes, specify the relative importances of individuals or groups, perhaps reflecting the

number of members in group j.

The choice of loss function can greatly affect which estimates are optimal and the Loss

(total). Common and natural choices for D() include squared errors and absolute errors,

for which the optimal estimates (minimizing expected Loss) are the mean and the median,

respectively. For symmetric data, e.g. if the outcomes follow Normal distributions, these

are the same. But if outcomes are noticeably skewed, as are individual health expenditures
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in most data, including ours, then the mean will be substantially larger than the median

(E. g. the mean is more than three times the median for individual expenditure VA data –

the Gamma distribution with convolution parameter equalling 0.72), so choosing absolute

error Loss when working with a skewed expenditure distribution strongly encourages under-

estimates of average individual expenditures. Aggregate expenditure then will be heavily

underestimated.

However, Losses will be asymmetric when allocating budgets to administrative units be-

cause underestimates foster perverse incentives (e. g. creaming and dumping) that degrade

patient care, while overestimates avoid this hazard. In that case, D() would take larger

values for negative errors and smaller values for positive errors of the same magnitude. The

non-symmetric loss we have chosen to use is:

D(error) = max(error,−k ∗ error), k > 1. (3)

Here, k = 1 corresponds to absolute error, for which the median is the optimal estimate.

The optimal estimate for skewed loss with an arbitrary value of k is to use the the p-th

quantile, with p = k/(1 + k). Thus, k = 2 indicates that underestimation errors are twice

as costly as those that overestimate. Individual level expenditure distributions at the VA

have the mean roughly at the 65th quantile, so the mean for this skewed loss is nearly

optimal.

Loss functions that emphasize individual patient estimates are inappropriate for the

management policy issues being discussed here. Budgets for particular administrative

units depend on getting aggregate totals right, and not forecasts for individual patient

components. Because aggregated costs tend to be symmetric and Normally distributed

(the central limit theorem), so we emphasize the Normal distribution in our evaluations

(E), even though cost data (F) for individuals are correctly modeled as highly skewed.
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The weights Wj are chosen to reflect the number of patients in an aggregate. They also

can depend on the outcome targets (e.g. the predictionj from the F-data). The Gamma

model fits the individual patient data much better than the Normal distribution, but fitting

these distributions requires concentrating much more than OLS on small expenditures

because the criterion in this scale family invokes percentage errors, not absolute errors.

Although the modeling and evaluation components are separated here, the Gamma of

course will gain especially for Loss functions that depend on percentage errors, i. e. on

(|errorj |/predictionj).

We have not emphasized that there is a natural scale to be estimated here, i. e. the

costs, in dollars. Modeling might be pursued in some non-linear form, e.g. someone might

use logarithms of costs, and our square-root link Gamma model relates most immediately

to the square-root of costs. That may be appropriate for modeling, but for the evaluation,

retransformation back to raw dollars must be undertaken, and that can be hazardous. See

Duan (1983) for the related issue with respect to smearing estimates. When dealing with

administrative budgets, this “smearing” issue simply means getting the total budget right

– the sum of all forecasts has to add up to a total budget. Operationally, we adjust all

estimates to match the actual mean of the evaluation data (E-data). Details and results

on some examples from the data will follow in subsequent drafts.

5 Discussion

The current analysis leaves a few questions to be resolved before proceeding further in

addition to the unfinished work described above. First, there are a number of additional

exploratory analyses done that were not presented here that have some implications for

further modeling work. Also, this version does not explore the impact of the regression to
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the mean phenomenon and the potential for hierarchical modeling and so that is discussed

briefly below as well.

Exploratory analysis with these models indicated that there were two general problems

in the quality of the fit that appeared no matter what model was employed. First, and

probably the most problematic, had to do with relatively sick individuals, who had a large

number of HCC flags turned on. Our square root link gamma distributed GLM model does

well throughout the range of the predictions until we get to the top five or ten percent of

the data. Then the model has large and significant negative residuals, indicating that the

raw-scale predictions overpay for these cases. If we do the same analysis by the number

of HCC’s for individual patients, we found that the problem occurs when there are 10 or

more HCC flags turned on. The incremental cost of adding one more disease could be less

if patients already have several diseases than if they have relatively few or none. Or that

incremental cost could be greater, it could be more costly to treat particular diseases if they

have other particular comorbidities. Some of this latter effect (e. g. with complications of

diabetes) already is built into the HCC structure. In the new Version 6 of the DCG/HCC

model, the developers have begun adding interaction terms between HCC’s, but only where

those incremental costs are significantly positive.

Another way to approach this might be to regroup these cases into a new set of super

HCC’s - such as complex diabetes with major complications, and turn off the HCC flags

for the complication HCC’s for these specific diabetic patients. By turning off some of the

HCC flags for comorbidities, we avoid this misspecification from assuming a simple additive

model. We cannot provide much guidance on how to form these super HCCs. For that,

one would need to involve clinicians to put together medically meaningful groups.

The second problem has to do with individuals with no HCC flag versus those with one

or more. Exploratory data analysis indicated that there were some problems of fit for those
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with no HCC flag when they were combined with the general population. Specifically, the

scale parameter was much lower (around 0.08) than for those with any HCC (around 0.7).

This implies that distribution for those without any HCC from Table 1 have costs that

are far more skewed to the right than those with at least one HCC. Also there is some

indication that the coefficients for the demographic variables (age, age squared, female,

and age missing) are different. This could suggest employing some type of two part model,

though that would be inefficient, or one could deal with this problem more simply by

separating the sample into two subpopulations – those with and without any HCCs –

without any kind of model for predicting how one would fall in the two groups. We have

done the latter here for illustration. For those without, the only covariates would be

the demographic variables. For those with any HCC’s, we would include HCC, special

population flags and demographic variables.

Ongoing work is still pushing to understand the effect of credibility differences across

HCC’s and the special population flags. The special population flags are of particular

interest in the VA with Congressionally mandated attention. We know that the estimates

of the special population flags are generally more noisy, reflecting variation in the health

care needs and expenditures in their underlying populations, than the estimates of the HCC

parameters. The sizes of the number of patients in each HCC and each special population

flag group also vary tremendously. Simply from understanding the impact of the regression

to the mean inherent in these types of populations, we can infer that hierarchical or multi-

level modeling focused on particular flags (or HCC’s) of interest would be enlightening. This

could be especially important in determining VA VISN allocations when the distribution

of these special populations varies greatly by VISN. However, at this point, we do not have

models to present in this area, though continuing work is ongoing and shows promise for

finding important practical effects.
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6 Conclusions

As risk adjustment continues to be a more and more common part of the adjustment

processes in resource allocation schemes used by health plans, employers, and governments,

this paper illustrates that important distributional aspects of those adjustments may have

been overlooked to some extent in previous work. This present paper offers a beginning

look at what some of those issues are and suggests this is an important area for further

research. In particular, we have suggested, but not studied, the possible role of hierarchical

models in focusing attention on the variability in the credibility of mean predictions for

particular classes of patients. More generally, we have shown that significant patterns of

mispredictions exist in OLS models common in these types of risk adjustment studies. And

we have begun to illustrate the issues involved in taking models developed on one sample

and applying them to a forecast sample, highlighting the impact of the choice of a loss

function. Clearly much more needs to be done to understand these expenditure relation-

ships further and small differences in modeling seemingly can lead to huge differences in

resource allocations or prices to providers.
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Table 3. 
GLM Gamma Distribution with Square Root Link on Full Estimation Samples 

 
Generalized linear models  No. of obs = 99997 
Optimization : ML: Newton-Raphson  Residual df = 99900 
  Scale param  4.091366 
Deviance = 90890.46667  (1/df) Deviance = .9098145 
Pearson = 408727.4542  (1/df) Pearson = 4.091366 
         
Variance function : V(u) = u^2  [Gamma]    
Link function : g(u) = u^(0.5)  [Power]    
Standard function : Sandwich      
         
Log likelihood = -877060.6315  AIC = 17.54368 
BIC = -1059247.79      
 

Parameter Coefficient Std. Err. z P>|z| 
Raw Scale 
Coefficient 

hcc001 27.03761 3.837391 7.05 0.000  $     731.03 
hcc002 37.0489 5.548342 6.68 0.000  $  1,372.62 
hcc003 15.1302 4.265487 3.55 0.000  $     228.92 
hcc004 7.098392 0.314812 22.55 0.000  $       50.39 
hcc005 41.27285 2.45389 16.82 0.000  $  1,703.45 
hcc006 21.90773 1.803466 12.15 0.000  $     479.95 
hcc007 16.98955 1.801931 9.43 0.000  $     288.64 
hcc008 11.8947 0.5218085 22.80 0.000  $     141.48 
hcc013 12.2983 0.572718 21.47 0.000  $     151.25 
hcc014 13.59827 0.5374534 25.30 0.000  $     184.91 
hcc015 8.511202 0.2608323 32.63 0.000  $       72.44 
hcc016 29.28046 5.263281 5.56 0.000  $     857.35 
hcc017 15.13539 1.186152 12.76 0.000  $     229.08 
hcc019 10.51755 2.329664 4.51 0.000  $     110.62 
hcc020 13.4038 1.218009 11.00 0.000  $     179.66 
hcc021 32.78456 2.202588 14.88 0.000  $  1,074.83 
hcc022 10.26744 0.6207715 16.54 0.000  $     105.42 
hcc023 6.958924 0.2406935 28.91 0.000  $       48.43 
hcc024 22.72831 2.861858 7.94 0.000  $     516.58 
hcc025 10.03982 0.7215449 13.91 0.000  $     100.80 
hcc027 16.97525 3.043503 5.58 0.000  $     288.16 
hcc028 7.997845 1.287043 6.21 0.000  $       63.97 
hcc029 9.107978 0.5607819 16.24 0.000  $       82.96 
hcc030 13.52238 3.110096 4.35 0.000  $     182.85 
hcc031 33.16345 0.7372553 44.98 0.000  $  1,099.81 
hcc032 24.41109 0.5315584 45.92 0.000  $     595.90 
hcc033 10.99506 0.3397994 32.36 0.000  $     120.89 
hcc040 56.57326 13.02074 4.34 0.000  $  3,200.53 



hcc041 36.67856 12.40745 2.96 0.003  $  1,345.32 
hcc042 10.5221 0.8140749 12.93 0.000  $     110.71 
hcc043 12.05017 0.6348274 18.98 0.000  $     145.21 
hcc044 8.200676 0.4690315 17.48 0.000  $       67.25 
hcc045 74.80313 14.93662 5.01 0.000  $  5,595.51 
hcc046 19.9368 5.005543 3.98 0.000  $     397.48 
hcc047 31.70091 4.277416 7.41 0.000  $  1,004.95 
hcc048 8.910051 0.5512447 16.16 0.000  $       79.39 
hcc049 8.308866 0.5309679 15.65 0.000  $       69.04 
hcc050 55.50527 2.657818 20.88 0.000  $  3,080.83 
hcc051 34.16908 1.532518 22.30 0.000  $  1,167.53 
hcc053 8.32644 0.7997688 10.41 0.000  $       69.33 
hcc054 7.719745 1.106672 6.98 0.000  $       59.59 
hcc055 10.63898 2.373941 4.48 0.000  $     113.19 
hcc058 12.89416 2.12436 6.07 0.000  $     166.26 
hcc059 9.035481 0.6682337 13.52 0.000  $       81.64 
hcc060 9.115826 0.5796742 15.73 0.000  $       83.10 
hcc061 17.49071 1.822838 9.60 0.000  $     305.92 
hcc063 7.549301 1.251873 6.03 0.000  $       56.99 
hcc064 6.832491 0.2879035 23.73 0.000  $       46.68 
hcc065 68.67059 6.612438 10.39 0.000  $  4,715.65 
hcc066 33.56563 5.38893 6.23 0.000  $  1,126.65 
hcc067 14.97386 1.221024 12.26 0.000  $     224.22 
hcc068 5.099481 1.303214 3.91 0.000  $       26.00 
hcc069 29.23801 4.033903 7.25 0.000  $     854.86 
hcc075 5.826871 0.2141078 27.21 0.000  $       33.95 
hcc076 13.60724 4.000321 3.40 0.001  $     185.16 
hcc077 35.1256 3.22401 10.90 0.000  $  1,233.81 
hcc078 11.97514 1.131379 10.58 0.000  $     143.40 
hcc079 5.221548 1.593386 3.28 0.001  $       27.26 
hcc080 9.346125 0.5002736 18.68 0.000  $       87.35 
hcc091 16.54201 1.902089 8.70 0.000  $     273.64 
hcc093 15.88933 3.620986 4.39 0.000  $     252.47 
hcc094 25.86051 4.171899 6.20 0.000  $     668.77 
hcc095 17.03942 4.353961 3.91 0.000  $     290.34 
hcc096 13.26853 2.007342 6.61 0.000  $     176.05 
hcc097 9.119974 0.3826319 23.83 0.000  $       83.17 
hcc098 41.66444 2.202886 18.91 0.000  $  1,735.93 
hcc099 9.670223 0.3129953 30.90 0.000  $       93.51 
hcc100 7.391308 0.2168686 34.08 0.000  $       54.63 
hcc102 19.27662 5.467267 3.53 0.000  $     371.59 
hcc103 8.987262 1.330211 6.76 0.000  $       80.77 
hcc110 33.4732 4.832966 6.93 0.000  $  1,120.46 
hcc111 12.582 3.956808 3.18 0.001  $     158.31 
hcc112 19.96072 3.751275 5.32 0.000  $     398.43 
hcc113 10.50856 0.3435536 30.59 0.000  $     110.43 
hcc114 18.72861 4.570601 4.10 0.000  $     350.76 



hcc115 27.59942 3.683949 7.49 0.000  $     761.73 
hcc116 20.45333 0.9766179 20.94 0.000  $     418.34 
hcc118 6.524408 0.4717504 13.83 0.000  $       42.57 
flag1 33.00486 10.21412 3.23 0.001  $  1,089.32 
flag2 132.5377 4.93026 26.88 0.000  $17,566.24 
flag3 40.2808 17.08991 2.36 0.018  $  1,622.54 
flag4 105.2284 5.830672 18.05 0.000  $11,073.02 
flag5 51.19106 3.482031 14.70 0.000  $  2,620.52 
flag6 106.1185 9.272044 11.44 0.000  $11,261.14 
flag7 62.33075 5.86182 10.63 0.000  $  3,885.12 
flag8 35.18357 3.854876 9.13 0.000  $  1,237.88 
flag9 23.35973 2.866188 8.15 0.000  $     545.68 
flag10 62.71267 2.728571 22.98 0.000  $  3,932.88 
flag11 136.3633 3.671568 37.14 0.000  $18,594.95 
flag12 32.88679 4.350088 7.56 0.000  $  1,081.54 
flag13 97.94384 23.79594 4.12 0.000  $  9,593.00 
flag14 118.6732 6.781541 17.50 0.000  $14,083.33 
agemiss -0.6471098 2.344377 -0.28 0.783  
age 0.0430026 0.0063162 6.81 0.000  
age2 -0.0056095 0.0003501 -16.02 0.000  
female 2.109217 0.3657939 5.77 0.000  $         4.45 
_cons 25.31801 0.2279175 111.08 0.000  $     641.00 
 



Table 3A. 
OLS Regression Results with Intercept on Full Estimation Sample 

 
Number of ob = 99997 
F( 96, 99900) = 159.95 
Prob > F  = 0.0000 
R-squared  = 0.4871 
Root MSE  = 10697 
 
Parameter Coefficient Std. Err. t P>|t| 
hcc001 4088.208 1039.468 3.93 0.000 
hcc002 14913.68 2929.998 5.09 0.000 
hcc003 3010.182 2101.459 1.43 0.152 
hcc004 1234.724 145.24 8.50 0.000 
hcc005 6619.386 931.7445 7.10 0.000 
hcc006 3037.228 673.9495 4.51 0.000 
hcc007 2656.679 563.9675 4.71 0.000 
hcc008 1199.196 213.8971 5.61 0.000 
hcc013 428.1034 334.9596 1.28 0.201 
hcc014 866.2725 225.0498 3.85 0.000 
hcc015 671.197 115.0851 5.83 0.000 
hcc016 7214.065 1510.21 4.78 0.000 
hcc017 4605.538 537.7566 8.56 0.000 
hcc019 1167.614 616.7736 1.89 0.058 
hcc020 1525.963 536.6976 2.84 0.004 
hcc021 7145.931 803.5789 8.89 0.000 
hcc022 2221.21 259.1573 8.57 0.000 
hcc023 406.0969 98.46357 4.12 0.000 
hcc024 8193.3 1206.332 6.79 0.000 
hcc025 513.9542 255.1861 2.01 0.044 
hcc027 4027.672 1462.959 2.75 0.006 
hcc028 3274.287 666.6331 4.91 0.000 
hcc029 1412.806 266.7465 5.30 0.000 
hcc030 2696.804 444.2445 6.07 0.000 
hcc031 3990.833 198.4598 20.11 0.000 
hcc032 2431.643 146.6024 16.59 0.000 
hcc033 884.3966 152.2694 5.81 0.000 
hcc040 13605.53 3882.012 3.50 0.000 
hcc041 10848.61 2751.805 3.94 0.000 
hcc042 1737.98 469.471 3.70 0.000 
hcc043 1825.659 239.6132 7.62 0.000 
hcc044 928.5503 178.3328 5.21 0.000 
hcc045 41092.9 7534.905 5.45 0.000 
hcc046 2785.452 5128.369 0.54 0.587 
hcc047 12279.57 1531.755 8.02 0.000 
hcc048 1256.059 242.5945 5.18 0.000 
hcc049 1691.019 288.7089 5.86 0.000 



hcc050 10879.92 1132.135 9.61 0.000 
hcc051 6755.445 495.9236 13.62 0.000 
hcc053 1629.538 376.2969 4.33 0.000 
hcc054 907.2913 636.5149 1.43 0.154 
hcc055 1181.023 617.1636 1.91 0.056 
hcc058 4490.26 809.6868 5.55 0.000 
hcc059 607.1261 248.7473 2.44 0.015 
hcc060 1890.748 250.8106 7.54 0.000 
hcc061 6713.511 1044.54 6.43 0.000 
hcc063 1141.744 372.8471 3.06 0.002 
hcc064 620.4885 143.2716 4.33 0.000 
hcc065 24870.19 2864.58 8.68 0.000 
hcc066 8711.527 1793.408 4.86 0.000 
hcc067 5284.812 733.5532 7.20 0.000 
hcc068 1105.236 776.2217 1.42 0.154 
hcc069 12207.88 2014.409 6.06 0.000 
hcc075 235.6607 92.45211 2.55 0.011 
hcc076 10205.33 3271.114 3.12 0.002 
hcc077 2900.954 1172.107 2.47 0.013 
hcc078 3509.624 571.0071 6.15 0.000 
hcc079 1266.218 841.9265 1.50 0.133 
hcc080 1903.54 220.2423 8.64 0.000 
hcc091 8582.05 900.1615 9.53 0.000 
hcc093 1603.976 1857.121 0.86 0.388 
hcc094 8236.764 1820.002 4.53 0.000 
hcc095 2166.992 1647.155 1.32 0.188 
hcc096 3428 864.4928 3.97 0.000 
hcc097 1055.515 155.1329 6.80 0.000 
hcc098 14718.53 898.8628 16.37 0.000 
hcc099 950.5977 126.3074 7.53 0.000 
hcc100 480.7236 82.744 5.81 0.000 
hcc102 10279.75 5342.868 1.92 0.054 
hcc103 846.4145 415.5246 2.04 0.042 
hcc110 5120.287 2492.157 2.05 0.040 
hcc111 2833.257 1979.356 1.43 0.152 
hcc112 6202.884 1386.714 4.47 0.000 
hcc113 1109.44 143.1452 7.75 0.000 
hcc114 6135.369 2718.433 2.26 0.024 
hcc115 3632.744 1411.392 2.57 0.010 
hcc116 5378.535 431.3861 12.47 0.000 
hcc118 1454.657 218.2523 6.67 0.000 
flag1 8508.872 2313.342 3.68 0.000 
flag2 38033.54 1899.655 20.02 0.000 
flag3 10508.23 3461.454 3.04 0.002 
flag4 22485.4 1952.906 11.51 0.000 
flag5 11994.16 1059.259 11.32 0.000 
flag6 32807.07 3405.18 9.63 0.000 



flag7 11438.6 1360.284 8.41 0.000 
flag8 3271.527 1081.399 3.03 0.002 
flag9 3344.31 888.6512 3.76 0.000 
flag10 14517.2 814.1472 17.83 0.000 
flag11 38074.04 1557.223 24.45 0.000 
flag12 7332.197 1262.831 5.81 0.000 
flag13 58074.17 18013.61 3.22 0.001 
flag14 38192.41 3161.251 12.08 0.000 
agemiss -144.1105 123.2517 -1.17 0.242 
age -17.41363 2.493696 -6.98 0.000 
age2 -1.23094 0.1358774 -9.06 0.000 
female 562.9697 143.5453 3.92 0.000 
_cons -2.084651 54.74119 -0.04 0.970 



Table 4. 
GLM Gamma Distribution with Square Root Link on Estimation Sample  

with at least One HCC 
 

Generalized linear models  No. of obs = 81725 
Optimization : ML: Newton-Raphson  Residual df = 81628 
  Scale param  1.464479 
Deviance = 63308.9103  (1/df) Deviance = .7755784 
Pearson = 119542.5102  (1/df) Pearson = 1.464479 
         
Variance function : V(u) = u^2  [Gamma]    
Link function : g(u) = u^(0.5)  [Power]    
Standard 
function : Sandwich      
         
Log likelihood = -742347.4973  AIC = 18.16934 
BIC = -859994.8038      
 

Parameter Coefficient Std. Err. z P>|z| 
 Raw Scale 
Coefficient 

hcc001 25.27114 3.499906 7.22 0.000  $     638.63 
hcc002 36.8054 5.522097 6.67 0.000  $  1,354.64 
hcc003 14.98808 4.267055 3.51 0.000  $     224.64 
hcc004 7.095097 0.310089 22.88 0.000  $       50.34 
hcc005 41.26798 2.434179 16.95 0.000  $  1,703.05 
hcc006 21.8738 1.793386 12.20 0.000  $     478.46 
hcc007 16.91033 1.767033 9.57 0.000  $     285.96 
hcc008 12.1049 0.51184 23.65 0.000  $     146.53 
hcc013 12.3473 0.59755 20.66 0.000  $     152.46 
hcc014 13.44546 0.536495 25.06 0.000  $     180.78 
hcc015 8.551488 0.27181 31.46 0.000  $       73.13 
hcc016 28.95015 5.169609 5.60 0.000  $     838.11 
hcc017 15.13357 1.182988 12.79 0.000  $     229.02 
hcc019 10.24351 2.285633 4.48 0.000  $     104.93 
hcc020 13.38187 1.237136 10.82 0.000  $     179.07 
hcc021 32.77664 2.199986 14.90 0.000  $  1,074.31 
hcc022 10.21948 0.614272 16.64 0.000  $     104.44 
hcc023 6.976457 0.241074 28.94 0.000  $       48.67 
hcc024 22.72199 2.813077 8.08 0.000  $     516.29 
hcc025 10.16063 0.756178 13.44 0.000  $     103.24 
hcc027 17.17586 2.960106 5.80 0.000  $     295.01 
hcc028 7.865595 1.254881 6.27 0.000  $       61.87 
hcc029 9.335093 0.557722 16.74 0.000  $       87.14 
hcc030 13.80784 2.9022 4.76 0.000  $     190.66 
hcc031 32.75761 0.740461 44.24 0.000  $  1,073.06 
hcc032 23.99099 0.53378 44.95 0.000  $     575.57 
hcc033 10.73679 0.345485 31.08 0.000  $     115.28 



hcc040 46.54109 11.34934 4.10 0.000  $  2,166.07 
hcc041 26.77885 8.74582 3.06 0.002  $     717.11 
hcc042 10.3392 0.817386 12.65 0.000  $     106.90 
hcc043 12.03631 0.625117 19.25 0.000  $     144.87 
hcc044 8.127387 0.468809 17.34 0.000  $       66.05 
hcc045 74.44934 14.8569 5.01 0.000  $  5,542.70 
hcc046 19.79314 5.123981 3.86 0.000  $     391.77 
hcc047 31.71795 4.361978 7.27 0.000  $  1,006.03 
hcc048 9.108757 0.562201 16.20 0.000  $       82.97 
hcc049 8.617107 0.526931 16.35 0.000  $       74.25 
hcc050 55.40124 2.658954 20.84 0.000  $  3,069.30 
hcc051 33.86877 1.531791 22.11 0.000  $  1,147.09 
hcc053 8.395578 0.787273 10.66 0.000  $       70.49 
hcc054 7.991985 1.083512 7.38 0.000  $       63.87 
hcc055 10.86332 2.308382 4.71 0.000  $     118.01 
hcc058 12.91116 2.13075 6.06 0.000  $     166.70 
hcc059 9.114973 0.656019 13.89 0.000  $       83.08 
hcc060 9.221782 0.580406 15.89 0.000  $       85.04 
hcc061 17.2653 1.811722 9.53 0.000  $     298.09 
hcc063 7.493298 1.185422 6.32 0.000  $       56.15 
hcc064 7.004521 0.286591 24.44 0.000  $       49.06 
hcc065 68.30036 6.636715 10.29 0.000  $  4,664.94 
hcc066 33.51266 5.376845 6.23 0.000  $  1,123.10 
hcc067 14.84611 1.219621 12.17 0.000  $     220.41 
hcc068 4.976438 1.285976 3.87 0.000  $       24.76 
hcc069 29.19102 4.043939 7.22 0.000  $     852.12 
hcc075 5.802032 0.224696 25.82 0.000  $       33.66 
hcc076 13.13951 3.940456 3.33 0.001  $     172.65 
hcc077 34.72456 3.219184 10.79 0.000  $  1,205.80 
hcc078 11.97124 1.109653 10.79 0.000  $     143.31 
hcc079 5.713827 1.62924 3.51 0.000  $       32.65 
hcc080 9.325042 0.499009 18.69 0.000  $       86.96 
hcc091 16.82524 2.172975 7.74 0.000  $     283.09 
hcc093 15.53241 3.563022 4.36 0.000  $     241.26 
hcc094 26.0374 4.182908 6.22 0.000  $     677.95 
hcc095 16.97976 4.259469 3.99 0.000  $     288.31 
hcc096 13.09687 2.003673 6.54 0.000  $     171.53 
hcc097 9.046525 0.372225 24.30 0.000  $       81.84 
hcc098 41.42074 2.2177 18.68 0.000  $  1,715.68 
hcc099 9.62914 0.311087 30.95 0.000  $       92.72 
hcc100 7.396169 0.221839 33.34 0.000  $       54.70 
hcc102 19.07271 5.423632 3.52 0.000  $     363.77 
hcc103 8.842293 1.294599 6.83 0.000  $       78.19 
hcc110 33.00696 4.820913 6.85 0.000  $  1,089.46 
hcc111 13.34046 3.850443 3.46 0.001  $     177.97 
hcc112 19.83678 3.731595 5.32 0.000  $     393.50 
hcc113 10.59049 0.344011 30.79 0.000  $     112.16 



hcc114 18.6463 4.595802 4.06 0.000  $     347.68 
hcc115 27.56324 3.635873 7.58 0.000  $     759.73 
hcc116 20.27509 0.978422 20.72 0.000  $     411.08 
hcc118 6.533735 0.466412 14.01 0.000  $       42.69 
flag1 44.83911 9.502568 4.72 0.000  $  2,010.55 
flag2 132.607 4.923589 26.93 0.000  $17,584.62 
flag3 45.32113 16.39869 2.76 0.006  $  2,054.00 
flag4 105.6444 5.833802 18.11 0.000  $11,160.74 
flag5 51.00868 3.486888 14.63 0.000  $  2,601.89 
flag6 106.0025 9.228555 11.49 0.000  $11,236.53 
flag7 63.51704 5.908269 10.75 0.000  $  4,034.41 
flag8 34.85903 3.833618 9.09 0.000  $  1,215.15 
flag9 25.05099 3.040064 8.24 0.000  $     627.55 
flag10 62.67373 2.717238 23.07 0.000  $  3,928.00 
flag11 137.465 3.689668 37.26 0.000  $18,896.63 
flag12 35.34776 3.936275 8.98 0.000  $  1,249.46 
flag13 97.80717 23.82512 4.11 0.000  $  9,566.24 
flag14 120.0965 6.834461 17.57 0.000  $14,423.17 
agemiss -10.25863 0.533396 -19.23 0.000  
age 0.0127221 0.007233 1.76 0.079  
age2 -0.0076114 0.000391 -19.47 0.000  
female 2.844564 0.499719 5.69 0.000  $         8.09 
_cons 25.90467 0.245964 105.32 0.000  $     671.05 
 



Table 4A. 
OLS Regression Results with Intercept on Estimation Sample with at least One HCC 

 
Number of obs = 81725 
F ( 96, 81628) = 136.76 
Prob > F  = 0.0000 
R-squared  = 0.4790 
Root MSE  = 11759 
 
Parameter Coefficient Std. Err. t P>|t| 
hcc001 3987.615 1065.922 3.74 0.000 
hcc002 14819.17 2925.648 5.07 0.000 
hcc003 2996.6 2103.566 1.42 0.154 
hcc004 1317.073 145.7769 9.03 0.000 
hcc005 6703.065 931.2422 7.20 0.000 
hcc006 3173.456 673.8521 4.71 0.000 
hcc007 2814.141 563.8228 4.99 0.000 
hcc008 1420.493 215.2098 6.60 0.000 
hcc013 548.409 335.1567 1.64 0.102 
hcc014 1111.958 226.6534 4.91 0.000 
hcc015 953.6946 119.7061 7.97 0.000 
hcc016 7155.309 1510.056 4.74 0.000 
hcc017 4534.916 537.1255 8.44 0.000 
hcc019 1159.951 616.4258 1.88 0.060 
hcc020 1658.073 536.3832 3.09 0.002 
hcc021 7186.219 803.0666 8.95 0.000 
hcc022 2369.001 260.3015 9.10 0.000 
hcc023 608.9742 100.5685 6.06 0.000 
hcc024 8204.538 1205.179 6.81 0.000 
hcc025 648.1215 255.6645 2.54 0.011 
hcc027 4038.788 1461.079 2.76 0.006 
hcc028 3301.461 665.7567 4.96 0.000 
hcc029 1472.186 266.6881 5.52 0.000 
hcc030 2783.606 445.815 6.24 0.000 
hcc031 4180.857 200.8376 20.82 0.000 
hcc032 2620.128 149.501 17.53 0.000 
hcc033 1088.222 155.1832 7.01 0.000 
hcc040 13171.41 3959.362 3.33 0.001 
hcc041 10577.68 2770.463 3.82 0.000 
hcc042 1747.258 469.3585 3.72 0.000 
hcc043 1947.188 240.0853 8.11 0.000 
hcc044 1030.305 178.4948 5.77 0.000 
hcc045 40962.09 7539.159 5.43 0.000 
hcc046 2793.457 5110.768 0.55 0.585 
hcc047 12220.55 1530.548 7.98 0.000 
hcc048 1321.59 242.6809 5.45 0.000 
hcc049 1815.441 289.5668 6.27 0.000 



hcc050 10815.42 1131.731 9.56 0.000 
hcc051 6691.683 495.0347 13.52 0.000 
hcc053 1709.085 376.2789 4.54 0.000 
hcc054 960.0559 636.336 1.51 0.131 
hcc055 1335.795 615.532 2.17 0.030 
hcc058 4488.059 810.3 5.54 0.000 
hcc059 709.8355 249.2136 2.85 0.004 
hcc060 1992.198 251.0958 7.93 0.000 
hcc061 6681.529 1044.329 6.40 0.000 
hcc063 1217.621 372.8804 3.27 0.001 
hcc064 793.078 145.2521 5.46 0.000 
hcc065 24737.02 2864.823 8.63 0.000 
hcc066 8569.734 1789.146 4.79 0.000 
hcc067 5226.349 733.1601 7.13 0.000 
hcc068 1141.136 776.8036 1.47 0.142 
hcc069 12114.56 2011.298 6.02 0.000 
hcc075 417.2737 95.42828 4.37 0.000 
hcc076 10096.49 3266.782 3.09 0.002 
hcc077 3097.293 1166.843 2.65 0.008 
hcc078 3560.471 570.8714 6.24 0.000 
hcc079 1319.339 841.2959 1.57 0.117 
hcc080 1987.999 220.2686 9.03 0.000 
hcc091 8518.678 900.1859 9.46 0.000 
hcc093 1564.828 1856.261 0.84 0.399 
hcc094 8304.122 1818.235 4.57 0.000 
hcc095 2091.366 1657.321 1.26 0.207 
hcc096 3440.557 862.8264 3.99 0.000 
hcc097 1165.056 156.3706 7.45 0.000 
hcc098 14618.89 897.6149 16.29 0.000 
hcc099 994.6197 126.6107 7.86 0.000 
hcc100 678.9651 86.21254 7.88 0.000 
hcc102 10304.46 5331.741 1.93 0.053 
hcc103 896.591 415.6599 2.16 0.031 
hcc110 5213.057 2490.415 2.09 0.036 
hcc111 2929.49 1975.747 1.48 0.138 
hcc112 6211.789 1386.403 4.48 0.000 
hcc113 1220.903 144.0509 8.48 0.000 
hcc114 6038.466 2719.358 2.22 0.026 
hcc115 3542.115 1411.693 2.51 0.012 
hcc116 5341.255 431.1433 12.39 0.000 
hcc118 1515.192 218.4834 6.94 0.000 
flag1 9098.852 2466.97 3.69 0.000 
flag2 37994.52 1901.11 19.99 0.000 
flag3 11115.85 3616.641 3.07 0.002 
flag4 22713.36 1948.414 11.66 0.000 
flag5 11827.05 1057.529 11.18 0.000 
flag6 32598.11 3405.566 9.57 0.000 



flag7 11617.48 1381.682 8.41 0.000 
flag8 3214.391 1081.827 2.97 0.003 
flag9 3325.122 920.6675 3.61 0.000 
flag10 14395.75 812.7865 17.71 0.000 
flag11 38443.23 1581.178 24.31 0.000 
flag12 7665.315 1312.36 5.84 0.000 
flag13 57785.96 17994.52 3.21 0.001 
flag14 38573.49 3191.675 12.09 0.000 
agemiss -823.7293 160.157 -5.14 0.000 
age -22.19263 3.219083 -6.89 0.000 
age2 -1.486504 0.1733101 -8.58 0.000 
female 644.7945 177.9571 3.62 0.000 
_cons -552.5609 85.10637 -6.49 0.000 
 



Figure 1: Full Sample Modified Hosmer/Lemeshow Test Results
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Figure 2: Restricted Sample (at least one HCC) Modified Hosmer/Lemeshow Test Results
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